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EXECUTIVE SUMMARY

The Jamestown-Verrazzano bridge is a double-cell segmental concrete bridge that was
constructed in Rhode Island in the early 90's to replace the aging old Jamestown bridge. The
approach spans were constructed using the span-by-span lift method whereas the cast-in-place
cantilever technique was used in the middle portion. Segmental concrete bridges represent a
relatively new type of construction in the United States. One of the design problems of such
bridges is the time dependency of various properties including creep and shrinkage effects. In
addition, thermal effects can be important design factor due to the large superstructure mass.

In order to verify design procedures and expand the knowledge of the time varying
effects on segmental bridges, a monitoring program was undertaken. Two sections of the bridge
were instrumented with thermocouples and Carlson strain meters. The monitoring was manual
at first but an Automated Data Acquisition System (ADAS) was installed in the Fall of 1997.
This allowed for continuous and remote monitoring of the temperature and strain sensors. This
report provides the data collected during a one year period, from September 1997 to September
1998.

Seasonal as well as characteristic daily temperature variations are studied. A probability
density function modeling the distribution of the extreme temperature differentials is developed.
This can be used for predictions of the occurrence of various temperature differentials. It is
found that the average temperature differential between the top and bottom slab is about 6 °F,
but temperature differentials reached 35 °F well above the 10 °F used during the original design
of the bridge. A small temperature difference between the north and south side of the bridge is
also observed (less than 3 °F).
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Temperature distributions in the superstructure are nonlinear. Maximum positive and
negative gradients are developed. A good agreement is obtained with gradients provided in
recent AASHTO design guidelines. Temperature gradients result in 50x107in/in strains.
Positive temperature gradients invoke compressive thermal stresses and negative temperature
gradients induce tensile thermal forces in the bottom of the bridge.

Concrete creep and shrinkage strains obtained from experimental test data are compared
to standard prediction methods established by ACI and two European specifications, namely the
Improved CEB-FIP MC 78 specification and the CEB-FIP 90 code.

The measured shrinkage strains agree well with the ACI 209 predictions. The two
European model codes predict shrinkage strains that are close to each other but lower than the
measured and the ACI results. The opposite is true for the case of the creep strains where ACI
209 results are lower than the measured creep whereas the CEB 90 and CEB 78 results are
comparable to the measurements. However, the total strains, i.e. both shrinkage and creep
strains considered togather are comparable for all cases. These results are in line with other

studies.



1. BRIDGE DESCRIPTION AND INSTRUMENTATION

1.1 Bridge Description

The Jamestown-Verrazzano Bridge, Fig. 1.1, is located over the Narragansett Bay between
North Kingstown and Jamestown, to the south of Providence, Rhode Island. The total length of the
bridge is 7,350 ft with a main span navigational clearance of 600 ft in horizontal and 135 ft in
vertical direction. The roadway width of the bridge is 74 ft and supports two lanes of traffic in each
direction. The bridge is made up of 52 spans, 29 of which comprise the approach spans and the
remaining 23 are the main structure. Eleven spans of the main structure form the west approach,
nine spans form the e¢ast approach and the remaining three comprise the main span section. It is the

main span section which is the focus of the present study.

R
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Fig. 1.1 The Jamestown-Verrazzano Bridge Looking West.
The Old Jamestown Bridge is also Shown on the Left



The main bridge structure consists of three spans made from a double-cell, post tensioned
concrete box girder built by the balanced cantilever, cast-in-place, box girder technique. The center
span is 674 ft long and the two side spans are 359 ft long each. The depth of the box girder changes

from 10 ft at the main span closure to 30 ft 10 in at the pier supports.

1.2 Field Instrumentation

In 1992, during the Jamestown-Verrazzano bridge construction, strain gages and
thermocouples were installed at selected locations in the main span of the bridge as an
Experimental Features Project by Construction Technology Laboratories, Inc. (CTL) and
RIDOT. The locations were selected during a joint meeting between CTL, RIDOT, and Dr. E.
McEwen of the University of Rhode Island (URI) during a May 6, 1992 meeting in
Saunderstown, RI. During that meeting two bridge cross-sections were selected for
instrumentation: a) the main span closure segment to measure longitudinal strain and
temperature gradients, and b) the segment adjacent to pier 14 to measure longitudinal strains
(P14MS1), Fig. 1.2.

In order to measure concrete strains, a total of 19 Carlson strain meters Type A-10 with
4-wire conductor cable were installed. Eight of the meters were installed in the main span
closure segment and the remaining eleven were installed in segment P14MS1. Out of the eight
strain meters in the main span closure segment, four were embedded in the concrete by
placement in the formwork prior to concrete casting but the remaining four were retrofitted and
placed after concrete setting in order to establish some correlation between the embedded and
the retrofitted ones. Fig. 1.3 shows the exact locations of the embedded and retrofitted strain

meters in the main span closure segment. The eleven Carlson strain meters that were placed in
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segment P14MS1 were all retrofitted since the installation occurred after the concrete had been
placed and cured. Fig. 1.4 shows the exact locations of the gages in P14MS1. Figures 1.5 and
1.6 show a typical embedded strain gage and a typical retrofitted strain gage respectively.
Temperature measurements were made with Type T thermocouples and the Carlson strain
meters which can also provide temperatures. Thermocouples were located only at the main span
closure segment at four locations; two in the top slab and two in the bottom slab of the double box-
girder, Fig. 1.7. A sensor located under the main span closure section provides outside bottom
temperature readings. The temperatures provided by the Carlson strain meters are used primarily

for strain correction calculations.
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Fig. 1.5 Embedded Carlson Strain Meter (A5699)

Fig. 1.6 Retrofitted Carlson Strain Meter
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Fig. 1.7 Location of Temperature Measurements in Main Span Closure Segment



1.3 Manual Measurements

Initial manual readings were taken during and after the construction of the bridge by CTL
and RIDOT. These are documented in a 1994 Report by Weinmann and Russell titled
“Instrumentation of the Jamestown-Verrazzano Bridge at Jamestown, Rhode Island.” Most of these
readings were taken in 1992 soon after the completion of the mid-span segment closure. Nine
readings are listed in 1993 and one in 1994. It is noted that the T5 thermocouple located in the top
slab of the north girder stopped functioning on July 9, 1992. One additional reading was taken by
RIDOT in July, 1996.

On January 1%, 1997 the current project was initiated with main objective to study long
term crecp and temperature effects on the main span of the Jamestown-Verrazzano bridge. In order
to facilitate the research project, it was decided to install an Automatic Data Acquisition System
(ADAS). The first task of the URI team was to continue manual readings until the time that the
ADAS system was installed and operable. The purpose of this task was to ensure that the sensors
were operating without any problem before the ADAS system could be installed.

There were four such readings made by URI, specifically on February 6, May 16, July 11
and August 27, 1997, During these times a team of URI and RIDOT personnel entered the bridge
at the Jamestown shore, walked through the box girder and took measurements at the two locations,
Fig. 1.8. All data were reduced using the procedures and formulae provided by CTL. These interim
measurement readings are included in “Interim Report, Task 1" by Tsiatas, G. and Chen, H., October
1997 and are not repeated here. In summary, the plots of the strain and temperature data appeared
to be in line with previous readings in CTL report. It was therefore assumed that the sensors were

functioning properly.



1.4 Automatic Data Acquisition System, ADAS.

In the week of September 15, 1997, CTL installed the ADAS inside the Jamestown-
Verrazano bridge. This allowed for automated acquisition of the data via modem. The ADAS
station is located in the main span closure segment and consists of a Data-Logger and three
Multiplexers, Figs. 1.9 and 1.10. Multiplekerl connects the eight Carlson strain meters in the main
span closure segment. Multiplexer2 registers the eleven Carlson strain meters in segment P14MS1
and Multiplexer3 connects the nine thermocouples in the main span closure segment.

Instructions for the operation of the Data-logger system, including remote access and control,
are included in a Report by CTL, (Weinmann, et al. 1997). CTL also provided a procedure to
import the data into Excel for further analysis. It is noted that thermocouple readings are directly
in °F. Carlson strain meter readings need to be reduced using the equations and methods of
Appendix A to obtain engineering quantities.

A computer station with a modem was set up in the Structural Engineering Laboratory at
URI in order to facilitate the continuous monitoring of the bridge, Fig. 1.11. The station became
operable on September 19, 1997. For the purposes of this project, the bridge was continuously
monitored for a year with readings taken at least every 2-hours with most readings taken at every
hour, some readings at 30-minute intervals and some of the readings at 15-minute intervals. These

readings are presented and analyzed in Chapter 2 of this report.
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Fig. 1.8 URI Students Take Measurements
Inside Jamestown Bridge

Fig. 1.10 J. Bak from RIDOT checks
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2. DATA MEASUREMENT AND PROCESSING

2.1 Introduction
Data were collected with ADAS from September 21, 1997 to September 23, 1998. Most
readings were taken at 2-hour or 1-hour intervals to capture seasonal variations. On selected
periods, readings were taken every 30-minute or 15-minute intervals to obtain accurate daily
characteristics. The raw data downloaded from ADAS were processed using the CTL templates to
obtain useful engineering parameters. In the case of the Carlson meters the data had to be further
reduced using the procedure outlined by CTL (Weinmann, 1994) in order to obtain the temperatures
and strains.
The following data are presented and analyzed in the present chapter:
»  Seasonal concrete temperatures at main span closure (section 2.2)
»  Daily concrete temperatures at main span closure (section 2.3)
*  Seasonal temperatures from Carlson Strain Meters (section 2.4)
*  Seasonal strain measurements (section 2.5)
»  Daily strain measurements (section 2.6)
Finally, section 2.7 presents a comparison of temperatures between the north and south girders. All

results appear reasonable and follow intuitive patterns.

2.2 Seasonal Concrete Temperature Measurements

The seasonal temperature variations in the top and bottom slabs of the main span closure
segment are shown in Figures 2.1 through 2.8. By analyzing the entire data set, it was determined
that peak temperature variations occur around 2:00 p.m. whereas the bridge is at the most stable

12



temperature condition at 6:00 a.m. Figs. 2.1, 2.2, 2.3, and 2.4 show the temperatures for both the

north and south sides of the bridge at main span closure segment as measured at 6:00 a.m. Figs. 2.5,

2.6, 2.7, and 2.8 present the same quantities but for 2:00 p.m. The figures include temperature

readings from the thermocouples as well as the embedded Carlson meters at the respective locations.

It should be noted that thermocouple T5 at the top north slab is not functioning and the

corresponding temperatures are not available.

iii)

1v)

The following comments can be made by inspecting Figs. 2.1 to 2.8:

A clear seasonal variation is obvious with temperatures dropping during the winter months
and rising again in early spring. There is a very good agreement between the temperatures
in September 1997 and the temperatures in September 1998. It should be noted that this was
an unusually mild winter and no single digit temperatures were observed in the bridge.

At 2:00 pm the concrete temperature variation within the bridge is the highest and at 6:00
am it is the smallest. The variation is much bigger in the top slab whereas it is smaller in the
bottom slab. Solar exposure of the top of the bridge appears to be the main factor
contributing to larger temperature variations within the top slab. The temperature variation
in the bottom slab at 6:00 am is very small.

The temperatures measured with the Carlson meters show some small difference from the
temperatures obtained using the thermocouples. It should be noted that the thermocouples
are in direct contact with the concrete whereas the Carlson meters measure the temperature
of a strain meter which is enclosed and is not in a direct contact with the surrounding
concrete. Typically the Carlson meters lag behind the thermocouples getting warmer or
cooler at a slightly slower rate.

The temperature variation is not linear within the slab. For example the temperature

13



difference between T1 and T2 is much bigger than the difference between T3 and T4.

v)  Thereadings at TS are typically larger than any other reading at 2:00 pm and smaller at 6:00
am. That clearly demonstrates that the top of the bridge is typically warmer during the day
but cooler during the night.

vi) The lowest temperatures occurred on top of the bridge (thermocouple TS) during a winter
morning. At that instant, the bottom of the bridge was warmer than the top and the
maximum negative thermal gradient took place. Maximum positive temperature gradients
usually occur in the summer months but due to the unusual weather of this year some of the

peak temperatures and the corresponding maximum positive gradients happened late spring.

2.3 Daily Concrete Temperature Readings

In order to study the daily concrete temperature variations, it was desirable to concentrate
on time periods with large temperature fluctuations. To this effect, Fig. 2.9 shows the outside
bottom temperature variations at 6:00 am and 2:00 pm for the whole year under study. Fig. 2.10is
developed by looking at the temperature differences between 6:00 am and 2:00 pm. A positive
value indicates that the temperature increased, whereas a negative value signifies that during that
particular day the temperature dropped from the early morning to the afternoon. With the help of
Figs. 2.9 and 2.10 seven 48-hour time periods were selected to evaluate daily concrete temperature
variations. Four time periods correspond to maximum temperatures and three time periods

correspond to minimum temperatures. Table 2.1 lists the exact time intervals of the seven periods.
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Fall Winter Spring Summer
Max Sept. 21-23, 1997 | January 13-15, | May 21-23, 1998 | Sept. 5-7, 1998
Temperature 1998
Min January 25-27, | April 27-29, 1998 | July 21-23, 1998
Temperature 1998

Table 2.1 Selected Critical Dates for Analysis of Daily Temperature Changes

Figures 2.11 through 2.38 present the temperature variations in the top and bottom slabs for
both north and south girders at the main span closure segment. All 48 hour segments start from 12
noon and end at 12 noon 48 hours later. The following observations can be made by inspecting Figs.
2.11t0 2.38:

i)  Temperature variations are large in the top slab but they are much smaller in the bottom slab.
In fact, within the bottom slab the temperature varies only by a few degrees whereas in the
top slab the variation can get closer to 26 °F. Solar exposure of the top of the bridge appears
to be the main factor contributing to larger temperature variations within the top slab.

i1)  Larger temperature variations are indicated in the early fall and late spring seasons. This is
consistent with other studies who have found biggest temperature variations during the fall
and spring seasons.

i) The nonlinear variation of the temperature within the thickness of the slab is evident. For
example the temperature change between thermocouples T1 and T2 is much larger than the
temperature difference between T3 and T4.

iv) The temperature obtained from the Carlson strain meters is not consistent with the
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vi)

thermocouples. The difference is usually small.

6:00 AM and 2:00 PM are the approximate times when the top slab temperature becomes
the smallest and largest respectively. This is also indicated in other studies (Shiu, et al.
1991).

It appears that at 8:00 AM and 8:00 PM the temperature variation within the slab is very
small since these are the approximate times that the plots of the top and bottom
thermocouples within a slab switch sides. One would expect that at these times concrete

strains due to temperature gradients would be minimum.

2.4 Seasonal Temperatures from Retrofitted Carlson Strain Meters

Fifteen retrofitted Carlson strain meters were installed in the bridge, four at the main span

closure segment and eleven at the pier P14MS1 section. Figs. 2.39,2.40, and 2.41 show the Carlson

temperatures at pier 14MS1 from 9/19/97 to 9/23/98 at 2:00 pm. Fig. 2.42 presents the temperatures

from the retrofitted Carlson meters at the main span closure segment. The following comments can

be made from these figures:

)

All temperature data follow the expected seasonal pattern, i.e. drop during the winter, rise
in early spring, and peak in the summer.

These are temperatures from the retrofitted strain meters. The readings are basically the
temperatures in the cell of the box girder section. In the case of the pier, the cell is very
deep, since the box girder at that location has a depth of about 30 ft. In the case of the main
span closure section the cell is smaller since the box girder at that location has a depth of
about 10 ft. The variation of the data at any given day is very small for the case of the main
span closure segment as can be seen from Fig. 2.42. The variation is somewhat larger,
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although still small for the case of the pier, Figs. 2.39, 2.40, and 2.41.

iii) At the pier support there is a 3 °F to 7 °F temperature difference between the north and south
cell. The temperature difference between the two cells is smaller at the main span closure
segment, of the order of 1 °F to 2 °F. The cell of the south side has consistently higher
temperature than the corresponding north cell. This difference is due to different solar

exposure due to the orientation of the bridge.

2.5 Seasonal strain measurements
The raw data from the Carlson strain meters were processed into strains using the formula
in Appendix A. Measured concrete strains represent concrete movements recorded between the date
of the measurement and the zero readings taken when the gages were installed. Figs. 2.43, 2.44,
2.45,2.46, and 2.47 present the one-year strains at 2:00 p.m. and Figs. 2.48, 2.49, 2.50, 2.51, and
2.52 show the year around seasonal strains at 6:00 a.m. Positive values indicate compressive strains
whereas negative values indicate tensile strains. The gages measure long term concrete strains.
Since most of the creep and shrinkage have already taken place, the variations of the strain between
6:00 a.m. and 2:00 p.m. are mostly due to the temperature changes. Strain readings in this study
have been adjusted to a reference temperature of 73 °F.
Most of the strain measurements can be explained by solar radiation. The following
observations can be made:’
1)  The strain variations at 2:00 pm are bigger than the variations at 6:00 am.
1i)  Scasonal variations in the main span closure section are bigger during the spring.
1) Strains at retrofitted meters show a small but gradual increase during the winter period.
iv)  Atthe main span closure segment the strains from the embedded meters at the north side are
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larger than the ones in the south side. This is consistent with the manual readings since the
beginning of the monitoring. The difference between north and south sides is much smaller
in the case of the retrofitted meters.

v) At the main span closure segment there is a large difference between the data from the
embedded and the retrofitted meters. The values of the retrofitted meters are much smaller.
This, again, is consistent with the manual readings.

vi) The strains from the retrofitted meters at the pier need to be further examined because they
do not always follow a specific pattern. For example in certain cases the values from one
meter are much different from the rest with no clear pattern. The validity of the retrofitted
meters still needs to be determined. It is possible that in the case of some meters the

anchoring to the concrete slab does not transmit all concrete deformations to the meter.

The measured strain depends on many factors such as concrete shrinkage and creep, seasonal
and daily temperature effects, and added dead load among others. It is noted that the embedded
strain gages started registering strain when the main span closure took place. Retrofitted gages were
installed later, after the concrete had already hardened. Table 2.2 compares the strains recorded one
year after the main span closure with strains recorded about six years after the main span closure.
The table shows that for the embedded gages strains increased somewhat. However, no clear pattern

is observed for the case of the retrofitted gages.
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Gage No 1:45 pm on 6/11/93 2:00 pm on 9/22/98,
1 642 742
2 798 907
3 356 538
4 526 725
5 159 83
6 112 124
7 40 -5
8 -47 -29.6
9 64 -25
10 - -24.5
11 58 -13.5
12 -37 243
13 28 -70
14 -128 -56
15 23 -19
16 101 12.6
17 -31 -117
18 132 23
19 62 19

Table 2.2 One Year and Six Year Concrete Strains (10°)
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2.6 Daily Concrete Strain Monitoring

Figures 2.53 through 2.87 present the daily variations of the strain data for seven sets of 48
hour periods. These are the same time periods as the ones used to show the daily variation of the
thermocouples. The following comments can be made based on these figures:

1)  Atanenlarged scale the data from the embedded strain meters show a small daily variation.
Note that the peaks relate to a certain degree with the temperature peaks determined by
thermocouple T3 which is close to the Carlson meter. This peak is later in the day than the
temperature peak of the thermocouple TS located at the top of the slab. Thermocouple T5
usually peaks about 2:00 PM, whereas thermocouple T3 peaks around 6:00 PM.

i1) Comparisons of the strains in the top and bottom slabs indicate that there is a distinct time
lag in the fluctuation of strains between the top and bottom slabs. It is between 8 to 12 hours
in the middle of the main span section and 2 to 8 hours in the pier section. In addition, the
magnitude of strain fluctuation is bigger in the top slab than the bottom slab especially in the
pier section. This may be caused by the temperature effects since the temperatures also
show bigger variations in the top slab than the bottom slab. An additional study of strain-
temperature variations is included in the next chapter.

iii) The irregularities of the retrofitted Carlson meters appear also in the daily strain variations.

The applicability of these sensors needs to be further studied.

2.7 North-South Temperature Differences

In order to evaluate the effect of bridge orientation on temperatures registered, the
temperature differences between the north and south side of the bridge are plotted in Figs. 2.88
through 2.94 for the seven 48-hour time intervals indicated in Table 2.1. bThe numbers shown in the
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graphs represent south side temperatures minus north side temperatures at the same level of the
thermocouples. The following observations can be made:

1)  Temperature differences are small, typically less than 3 °F.

ii) Maximum temperature differences occurred in April and May. The absolute maximum
difference during the monitoring period took place at noon on May 21, 1998. At that
moment the north girder was 3.8 °F warmer than the south girder at the bottom slab.

iii) There is a seasonal dependence of the temperature differences.

iv) The north-south temperature differences of the top and bottom slabs usually have opposite

signs.

21



T4 x

Tz x
Carson @
™ x

of
"’%g?:o'
T e@?bo
-~ Yoo
% F - @ .
‘e o O e a: < P
‘ ‘ © A
o ) - < %~
oﬁ%g
A TR
L)
?
2R
o o o o o o
> © ~ © [re) < 8 8 =

d, ‘aanjesadwa]

350

300

250

200

150

100

50

Time, days

Concrete Temperatures in Top of the North Slab of Main Span Closure

Figure 2.1

Segment at 6:00 a.m. from 9/19/97 to 9/23/98

22



€C

86/€2/6 0} /6/61/6 WOl "W e 00:9 Je uawbag
ainso|) ueds ulely Jo qe|S YUON 9y} Jo wopog ul sainjeladwa) 9)9Jou0)  Z'Z ainbiy

sAeq ‘aw}

0G¢e 00¢ 06 00¢ 0s1 001 0s 0

L]

g s ~.
]

x vi- gt
4

x €1
4 uosien

X zZyoy
x a0 ¥

ST
N

ol

(074

o€

oy

0s

09

(=
I~

08

4, ‘@injeradwa



ve

86/€2/6 0} /6/61/6 wolj "w'e 0Q:9 je Juswbag
ainso|D ueds uie JO geiS ynos ayy jo doj ul saimelsadwa] sjalouo) ¢'Z ainbi4

sAep ‘awnn]

0s€e 00¢e 0S¢ 00¢ oSt 0oL 0s

ol

0¢

- 0€

oy

0§

09

0.

08

06

4, ‘@anjesadwa]



S¢

86/£2/6 O} /6/61/6 WOl "w'e 00:9 je Juswbag
24nsojD uedg ulely JO ge|S Yinog ay} Jo wopog ul sainjesadwa] 8}8I0uo0) 'z ainbi

sAep ‘awij
0G¢ 00¢ 06¢ 00¢ 0S5t 0oL 0S 0
_ , , : -
vlov | m m 5 . .
gL w ” ﬂﬂ , ﬂ%#m
| | ﬁp
¥
, o &
i e VR
K. (I mu . '
%.% 2 "y |
’ ¥ f
m 3 )
— L}
[ ED
\ fh )

0c

o€

oy

0§

- 09

04

08

06

4, ‘ainjesadwa]



0se

9¢

86/22/6 0} 16/61/6 Wolj "w-d 00:¢ Je uswbag
8Ins0|) uedg ulely JO qe|S YLON au Jo do] ul sainjeladwsa] 8jasouc) G g ainbiyg

sAep ‘awi}

00¢€ 0S¢ 00¢ 0G1 00l 0s

0ol

d, ‘ainjesadwiag



1Z

86/2¢/6 0} /6/61/6 Woly "wrd 00: 1e Juswbag
2Inso|) ueds ule JO ge|S YHON ay) Jo woyog Ul sainjelsdwa | 8ja1ouod) 9’z oinbi

sAep ‘awn}
0S¢ 0o€ 0sz 00Z 0St 00l 0S

LR

¢
AR
€L e
z# =
AT
Il -

0¢

o€

- ov

0S

09

0.

08

06

0oL

4, ‘@anjesadwa



8¢

86/22/6 0} /6/61/6 woij "wrd 00:Z Je Juswbag
8Inso|D uedg ule JO ge|S Yinog ay} jo doj ul sainjesadws ] 81010u0)) 2z ainbi4

sAep ‘awi]

0s¢e 00€ 052 00Z st 00} 05 0
, , , ) 02

Ge

ov

0§

09

02

08

O o*

06

ool

oLl

4, ‘aanjesadwa |



6¢

86/22/6 0} /6/61/6 woly "w'd 00:Z Je Juswbes
2inso}) uedg ulep JO gejS YINOS ay) Jo wonog Ui sasmnjesadwa | 8ja10u0)  g'Z ainbiyg

sAep ‘awi]
0S¢ 00€ 0SZ 002 oSt 0014 0S 0

0

o€

oy
0S
09
§ o
08

06

0ol

4, ‘aanjesadwa |



o€

86/€2/6 0} /6/61/6 Wolj "w'd 00:Z pue "we 00:9
1e Juswbag ainso|D uedg ulepy Jo qe|S 8y} Jo wojog je sainjesadwa ] apiIsinQ  6°g 24nbi4

sAep ‘awl]
0s¢e 00¢ 0S¢ 01074 0S1 001 0§ 0
- 'wd o0z 'LnO 109
ﬁ :.E.w‘oo“o‘w_.DO‘..rOm v @ v v
¥
+ v v ¢ v
,00 . o 0%4 v v
%0 Qﬂs QQ v ¢< 04 v
¥ v i%o. .Wﬂo ve, o&%%q %
Vv c%ucwq QQ‘Q«Q ‘oo ol v oY cqooowf v
Vg b WG e PIF VG s w
¥ % 9 *q REXIECAE 2 WM eTe @ * ov v
v 0<q£€w0nq% v e’ e S R Mo v v ey,
. V«qo@“ » @ S v v .« . <0Wf“@d< v
KA L AT - o Y Ny
[ 4 .
4 MM«Q«( S et o % %0%%
& % @qq ng«é P'S “ * * * &z v
S AC AR S Owﬁ’ﬁoq LAEAL"
? ¢ ’ v OQQ * 0 OQ W
y ﬂ&&i&r F oo - PN
0~ * 4 *0, ;
o¢ B Noqoooo&o . . A e
* .
L

01

0Z

o€

oy

0s

09

04

08

06

4 ‘aunjesadwaj



Otz

O

25

4 ‘ainjesadwa]

-15

-20

Time, days

Figure 2.10 Outside Temperature Change between 6:00 am and 2:00 p.m.

9/19/97 to 9/23/98
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Figure 2.39 Concrete Temperatures from Carlson Strain Meters at P14MS1, from 9/19/97 to

9/23/98, 2:00 p.m.
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Figure 2.40 Concrete Temperatures from Carlson Strain Meters at P14MS1, from 9/19/97

to 9/23/98, 2:00 p.m.
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3.0 THERMAL DIFFERENTIALS AND GRADIENTS

3.1 Introduction

As temperature rises and falls, an unrestrained bridge structure responds through thermal
movements. These can be classified into three types: longitudinal movements, transverse
movements, and thermally induced curvature. In this study, we concentrate in longitudinal
movements. It has been observed (Emerson 1977, 1982; Priestley and Buckle 1979) that the
temperature fluctuations can be separated into two components: a uniform change and a gradient.
The uniform temperature change causes a uniform longitudinal thermal movement. Temperature
gradients also cause longitudinal thermal movements. However, the gradients in general are not
linear within the thickness of the bridge. Since the strains are proportional to the temperature
change, non-uniform temperature strains are induced. Thermal stresses follow due to restraint to
expansion and rotation.

In this chapter bridge temperature fluctuations are further investigated. Specifically, the
variation of the temperature differentials as well as the temperature gradients are studied. Based on
the bridge data a probability density function is developed to model the distribution of the extreme
temperature differentials, (Section 3.2). Bridge temperature gradients are also determined and
compared to current AASHTO specifications, (Section 3.3).

The chapter also includes a discussion on the relation between temperature and strain

variations, (Section 3.4).
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3.2 Temperature Differentials

Until very recently bridge design specifications assumed a linear temperature distribution
within the bridge superstructure in the form of a temperature differential between the top and bottom
sides of the bridge. It is noticed from the original design of the Jamestown bridge that a temperature
differential of 10 °F was used. In this section the data collected over the one year monitoring period
are analyzed to develop a model for the distribution of such temperature differentials.

Temperature differentials between top and bottom slab at the main span closure section are
investigated. These are calculated by subtracting the temperature in the bottom slab (BS-4) from
the concrete temperature at the top of the bridge girder (TS-5). It is noted that these are
simultaneous differentials, i.e. the subtraction takes place at the same time instants. Since we are
interested to study the distribution of the extreme differentials, the highest or lowest temperature
differentials are used from each day monitored. In order to study seasonal temperature differentials
the data are divided in the corresponding seasons and each season is studied separately.

Figs.3.1,3.2,3.3, and 3.4 show the variation of the extreme temperature differentials for fall,
winter, spring and summer respectively. Histograms of the data are presented in Figs. 3.5, 3.6, 3.7,
and 3.8. The figures indicate that temperature differentials of about 6 °F for fall and winter and 25
°F during spring and summer, were most frequently encountered between the top and bottom slabs
of the box girder. The measured maximum positive temperature differential is 35 °F and occurred
in the spring. Typically, maximum positive differentials occurred about 5 pm and maximum
negative differentials about 4 am. The minimum temperature differential is —9°F and took place
during winter. Note that positive temperature differentials represent a higher temperature in the top
slab than the bottom slab.

Figure 3.9 presents the variation of the extreme temperature differentials for the whole year
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of monitoring. About 42% of the temperature differentials are about 6 °F which is less than the 10
°F assumed during the original bridge design

It is noted that until the late 80's AASHTO specifications did not provide for temperature
gradients for bridge design. Only changes of the mean temperature affecting longitudinal movement
were considered. The Post Tensioning Institute (PTI) did recommend a linear temperature
differential. Following this guideline a linear differential of 10 F for Group IV loads and 20 F for
Group V loads (i.e. no live load and impact included in Group V) was used for the original design
of Jamestown bridge. During the mid eighties it was realized that with longer spans having
optimized sections bridge differentials could be important. NCHRP Report 276 (Imbsen et. al.,
1985) suggested a nonlinear temperature gradient to be used for the design of bridges. Later
AASHTO specifications adopted these guidelines with some modifications.

In order to be able to make future predictions on the probability of occurrence of certain
temperature differentials, a probability density function is developed using the data of Fig. 3.9. A
shifted lognormal probability model is used to model the extreme temperature differentials. The
model is summarized in Kottegoda and Russo (1997) who provide the functions needed to develop
the model based on the data at hand.

As a first step in the model development, the mean value, the standard deviation and the
coefficient of skewness for the data are calculated. These are u=13.84, ¢ =9.988, and y, =0.129
respectively. According to Kottegoda and Russo, the shift parameter € is determined by the solution

of a third order equation:

yi(u-6)Y-3(u-6>0-0>=0 (3.1

The final value for the shift parameter, which is also known as the location parameter,

118



based on our data is € =—128.58. Two additional parameters are needed for the definition of the

shifted lognormal distribution. These are given by the following expressions:

Ot * \/ln[n ( - g) ] (32)

2
1 c
g = Ini -~ £)- EIH[H [ﬂ - E] } (3.3)

In Eqs. 3.2 and 3.3 X, corresponding to the extreme quantity under consideration, which in this
case is the maximum temperature differential, u and o are the mean and standard deviation of this
quantity, and € is a location parameter (shift). The probability density function (pdf) of the shifted

lognormal distribution is given by:

1 1| In(x-¢)- Hincx o) 2
fe ()= 2 oo _[ N °
X s O hn( X -2 27 (x-¢) 2 T in( X puu-e)

For the data set of the one-year extreme temperature differentials of the Jamestown Bridge, the

pdf of the shifted lognormal distribution, Eq. 3.4, becomes:

1
004647 - (x + 218.58)

fr, ()= exp|- 14546- (In(x + 21858) - saag)’]  (3.5)
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where x = temperature differential.
The shifted lognormal distribution for the extreme temperature differentials at the main span
closure segment is shown in Fig. 3.10. A good correlation is obtained between the calculated shifted

lognormal function and the measured data.

3.3 Temperature Gradients

The seasonal peak temperature gradients within the bridge are presented in Figs. 3.11
through 3.17. A positive gradient is shown for the fall but both positive and negative gradients are
indicated for the winter, spring and summer seasons. It is noted that the positive temperature
gradients usually occurred in early afternoon, around 2:00 pm.to 3:00 pm. Negative temperature
gradients were observed in early morning, around 6:00 am to 7:00 am.

The critical positive temperature gradient took place on April 27, 1998 at 2:30 p.m. A
critical negative temperature gradient occurred twice during the one-year monitoring, on September
23, 1997 at 6:00 am and on January 15, 1998 at 7:00 am.

It is interesting to compare the observed extreme gradients with the AASHTO
recommendations. Fig. 3.18 compares the observed maximum positive gradient to the 1994
AASHTO specifications as applied for the location of the Jamestown-Verrazzano bridge. Fig.3.19
presents the comparison for the case of the extreme negative gradients.

Figs. 3.18 and 3.19 indicate that the top slab temperature gradients (including positive and
negative gradients) are quite close to the AASHTO specification requirements. However, the
bottom slab temperature gradients are higher for positive gradients and lower for negative ones

compared with thel994 AASHTO recommendations. Similar observations are found elsewhere
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(Shushkewich, 1998; Shiu, et al. 1991). It is noted that the AASHTO recommendations on
temperature are based on the NCHRP Report 276 (Imbsen, et. al., 1985). According to that report
a value of 5 °F was suggested for the bottom slab of the positive gradient and 8 °F was
recommended for the case of the negative gradient. However, AASHTO specifies that in both
positive and negative gradient cases the value should be taken as zero unless a site-specific study
is made. Even then, the value cannot exceed 5 °F for positive gradients or 1.5 °F for negative

gradients (Guide Specifications for Design and Construction of Segmental Concrete Bridges, 1999)..

3.4 Concrete Temperature-Strain Variations

In this section the strain changes induced by temperature variations are studied based on the
data readings. Strain and temperature measurements at the mid span closure section over three 24-
hour periods are used to evaluate the temperature induced strain variations. The three 24-hour
periods correspond to the times that critical temperature gradients occurred.

Figures 3.20, 3.21, and 3.22 present the strain and temperature changes in the north girder
of the main span section. It is noted that the embedded Carlson strain meters (#2 and #4; #1 and #3)
exhibit higher strain variations than the retrofitted Carlson meters (#6 and #8; #5 and #7).

Fig. 3.20 shows a fall temperature variation of 25 °F while the extreme strain change is

50x10~*in/in. During the winter, Fig. 3.21, temperature changes of 18.5 °F cause strain changes of

40x107in/in. The strain and temperature changes are 50x10~%in/in and 28 °F respectively during
spring as shown in Fig. 3.22.
Fig. 3.23 presents the extreme temperature gradients at three time instants and the concrete

strain variations between 6:00 a.m. and 2:00 pm within the corresponding 24-hour period. The
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following observations can be made:
i)  The negative temperature gradients induce strain variations in the opposite direction than
the positive gradients.
ii) Te bigger the temperature changes the more the strain variations.
iii) Positive temperature gradients invoke compressive thermal stresses and negative
temperature gradients induce tensile thermal forces in the bottom of the bridge.
Although such observations are intuitive they verify that the system responds as expected. It is
noted that there are few strain meters for a more accurate evaluation but the results shown in Fig.

3.23 are in line with observations made during other bridge monitoring studies.
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4.0 STUDY OF CONCRETE SHRINKAGE AND CREEP STRAINS

4.1 Concrete Short Term Properties

Physical properties of the concrete used for the closure section of the bridge were determined
by CTL (Weinman,1994). Concrete cylinders were cured in the same environment as the closure
segment until one day prior to the testing which took place at CTL in Illinois. Results of the short-

term tests, as presented in the CTL report, are summarized in Table 4.1.

Table 4.1 - Short-Term Concrete Properties

Age, Compressive Modulus of Coefficient of
(days) Strength, (psi) Elasticity, (ksi) Thermal Expansion,
(10°/°F
3 4175 3200 6.45
7 5060 3250 5.67
28 6310 3445 6.93
90 - 5965 3500 -

4.2 Laboratory Shrinkage Tests

Long-term shrinkage tests were conducted in the CTL laboratory at a constant temperature
of 73° F and a Relative Humidity of 50 %. The shrinkage tests began at concrete ages of 3, 7, and
28 days. It is noted that the concrete cylinders were covered, stored, and cured at the bridge site
under the same environment as the closure segment. Hence, it can be assumed that drying started
a day after they were removed from the forms. Results of the shrinkage tests as taken from the CTL

report are shown in Table 4.2.
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Table 4.2 - Measured Shrinkage Strain of Concrete (106)

Age in Days After | Test Starting at 3 Days Test Starting at 7 Test Starting at 28
Beginning of Test after Casting Days after Casting Days after Casting
1 109 30 16
2 153 48 58
3 179 88 66
4 198 133 69
5 213 140 73
6 222 175 76
7 232 198 123
14 - 258 135
15 395 - -
21 454 351 167
28 525 418 199
59 633 563 319
90 - 619 369
91 678 - -

121 736 - -

122 - 623 403
151 797 - -

152 - 683 411
182 - 688 424
183 798 - -

214 771 706 438
245 826 703 493
276 856 721 503
307 - 737 506
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308 863 - -
338 865 - -
339 - 743 512
364 - - 512
365 865 760 -

4.3 Analysis of Shrinkage Data
The relationship of shrinkage and time under constant temperature and humidity can be
expressed by the square root of a hyperbolic function (Bazant et al.,1976). This relationship can

be written as

05
fsh(’)”w[ ’ ] CBY

T, +t
sh

where &, = ultimate shrinkage strain
7., = shrinkage square half-time
e.,(t) = concrete shrinkage at time t
This relationship was used to curve fit the laboratory shrinkage data. Eq. (4.1) can be

transformed into

R
2
gsh

1
+—
.2 (4.2)
o]

~ | —

sh .
52
o]
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The parameters ¢_and 7, were found from a linear regression on the experimental data with the
dependent variable taken as 1/(¢,,)’ and the independent variable as //¢. In this analysis &, is the
measured shrinkage strain and t the duration of drying. As indicated in the literature, this approach
is very sensitive to the values of shrinkage data obtained early in the testing history. If these
readings are erratic, large differences can occur in the values for the constants &, and <,
Consequently, to apply this approach to the laboratory data from the Jamestown Bridge early
readings had to be omitted from the regression analysis.

For the three sets of shrinkage data the following constants were determined:

Start of Test £, (N First Data Point
(Days after specimen Considered
preparation) ’

3 days 946 x 10° 88 3 days

7 days 996 x10°® 171 7 days

28 days 522 x10°° 138 7 days

Comparisons between calculated and measured shrinkage for the three sets of data are shown
in Figs 4.1,4.2 and 4.3. Considering the sensitivity ¢ this approach to initial test data, the figures

indicate that Bazant’s hyperbolic function, Eq. 4.1, is a good representation of the measured data.

4.4 Comparison of Measured Data and Shrinkage Predictions
There are various procedures to predict shrinkage in concrete structures. The Jamestown
Bridge was designed for shrinkage according to the European Recommendations CEB-FIP Model

Code 1978. A comparison is made between the measured lab data and a) the ACI Committee 209
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recommendation, b) a modified version of CEB-FIP MC 1978 referred to as Improved CEB-FIPMC
78, and c) the latest European Recommendations CEB-FIP Model Code 90.

All guidelines predict concrete strains from the time that shrinkage started,t,, which depends
on the type of curing followed. In our case, specimens were cured on site under the prevailing
conditions and it is assumed that shrinkage started one day after their preparation. Some
assumptions of wet concrete properties had also to be made in the prediction equations, since this
information is not available.

For shrinkage after 7 days in moist cured concrete the ACI Committee 209 recommendation
is the following:

t-t

CE)y = )y 3Ty ([_SZS) 43)

X e, 6 (4.4)
where (gsh)u 780 }/thIO

and 7sh=70p'7ll}/h'}/s‘yt//'70'}/& (4.5)
where t = age of concrete at start of test, days

t, = age of concrete when shrinkage starts, typically immediately after the initial wet
curing, days (assumed as 1)
(e4), = concrete shrinkage strain at time t,
(&4), = ultimate shrinkage strain,
Y. = correction factor

Y, = curing duration factor (for one day curing Yo=1.2)
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v, = relative humidity factor (y,=.9 for RH=50%)
v, = size factor ( 1.0 for a 6 x 12 cylinder)

Y, = slump factor (assumed as 1.07)

Y, = fine aggregate factor ( assumed as 1.0)

Y. = cement factor ( assumed as 1.0)

vy, = air content factor ( assumed as 1.0)

For the Jamestown bridge data, Eq. 4.3 reduces to:

-t

-6 s
= 901x10 .
(gsh)t— L X 354 (¢ - ts) (4.6)

Note that for shrinkage considered from a time different than the end of wet curing a differential
approach can be followed. For example, to compare the ACI 209 provisions with the test data the

following equation can be used:

R S e R P 4.7)
o hY o] N

where (g,,).., 1S the shrinkage strain of the specimens at concrete age t when measurements were

initiated at time t,. For the three sets of the Jamestown bridge data t,=3, 7, and 28, and t=1.

The improved CEB-FIP MC 78 approach provides the following relation for shrinkage,

(Muller and Hilsdorf, 1990):

gcs(t,ts,to) =6 'Bs(t - IS)— ,Bs(to - ts) (4.8)
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where ¢ = concrete shrinkage;
€., = basic shrinkage coefficient;
B, = coefficient describing the development of the shrinkage with time;
t = age of concrete;
t, = age of concrete at beginning of shrinkage;

t, = age of concrete at the moment from which the influence of shrinkage is considered.

The basic shrinkage coefficient €, is given by:

£ g = ~0.00069-B B 5B for 40< RH < 99%

sl
_ 4.9)
= 4—0.00011-[531 -Bsz for RH 2> 99%

Iasl

where RH is the ambient relative humidity (50% for our data). It is noted that the case of RH>99%

corresponds to submersion and the strain changes sign (expansion instead of shrinkage). The

coefficients {3, B,,, Psy are given by:

B,, =0.85 for stiff consistency of the fresh concrete
=1.00 for plastic consistency
=1.15 for semi-fluid consistency

B,=10 for slowly, normal, or rapid hardening cement

= 1.2 for rapid hardening high strength cement

By = 1-(%}3 (4.10)
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The development of shrinkage with time is modeled with the function B, given by:

0.6

¢
o= |~
) 0.018-h02+t

where t=t-t,ort=t-t,

h, = (2A.)/u (mm)

A_ = area of the concrete section

u = perimeter in contact with the atmosphere.
For the Jamestown bridge data Eq. 4.8 becomes:

-t 06 t —-t
s o s

e (61,1 )=-60375-10"° -
CcS S O

104516+ ¢ -¢ 104516+t -t
Ky o s

where t;=1, and t,=3,7,28 for the three data sets.

(4.11)

0.6
(4.12)

The latest CEB-FIP MC 90 recommendation provides the following equation to calculate

shrinkage:

Lt )= : r—-t
SCS( S) 8CSO BS( S)

(4.13)

where €, = basic shrinkage coefficient, B,=coefficient that describes the development of shrinkage

~ with time, t=age of concrete in days, t;=age of concrete at the beginning of shrinkage. The basic

shrinkage coefficient is given by:
8cso = 8s(.f‘cm).BRH
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with

. =6 (4.15)
e (f,, )= |160+B (90~ f )10

where f,_ is the mean compressive strength of concrete at 28 days (in Mpa), and B, is a coefficient
that depends on the type of cement according to:
B,.= 4 for slowly hardening cement
= 5 for normal or rapid hardening cement
= 8 for rapid hardening high strength cement
The coefficient By, accounts for the effect of relative humidity, RH. For 40%<RH<99% it is given

by:

RH 3
Baw = —1-55{1- (Wj } (4.16)

The development of shrinkage with time is given by:

0.5
t-t
-1 - S 4.17
p.(e-1.) [0.035-hj+t—tsj (17

with h =(2A /u), A =area of cross section, and u=the perimeter of the cross section exposed to the
atmosphere. Note that the units of u, in Eq. 4.17 are mm. For shrinkage considered from a time
different than the end of wet curing, a differential approach can be followed. For example, to

compare the CEB-FIP MC 90 provisions with the test data the following equation can be used:
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Ecs(t’tsto) = (gcs)t_ t - (SCS)t _t (418)
S o S

where (gy),, 1s the shrinkage strain of the specimens at concrete age t given that measurements

initiated at time t,. For the data of Jamestown bridge, Eq. 4.18 becomes:

05 05
t-t 1, ~ 1t
p - 530.08. : . o s 4.19
8., (6,2,,1,) = 532.28 (203,23+t—tsj (203.23+t0—tsj @1

The measured shrinkage (hyperbolic function) for the three data sets is compared with the
ACI Committee 209 results, the Improved CEB-FIP MC 78 predictions, and the CEB-FIP MC 90
results in Figs. 4.4, 4.5, and 4.6. In all cases there is a good agreement between the ACI Committee
209 results and the Jamestown Bridge shrinkage data. The two European model codes (Improved
MC 78 and MC 90) predict shrinkage strains that are in general close to each other but lower than
the measured and ACI results. This may be due to different materials and conditions in Europe
which may have influenced the predictive formulas. The relative positions of all curves are the same
in each of the figures. The agreement between all methods is better for the 28 day test data. This
may be due to the fact that a good amount of shrinkage already took place before measurements

were begun. In all three cases the Jamestown bridge test data is higher than the predicted shrinkage.
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4.6 Laboratory Creep Tests

Long-term creep tests were conducted by CTL during phase one of this research at a constant
temperature of 73°F and a relative humidity of 50%. Three sets of tests were conducted
corresponding to the three sets of shrinkage tests. For the first test, which started 3 days after
casting, specimens were loaded to 1560 psi. The second test started 7 days after casting with
specimens loaded to 1790 psi. The third test was initiated 28 days after casting with specimens
loaded to a stress level of 2480 psi. Tests were conducted at different stress levels since creep
depends on the applied stress and an effort was made to use stress levels which would approximate
the stresses expected in the real structure. It is noted that creep depends on the stress level. Creep
strains were calculated as the difference between the strain readings of the creep specimens and the
strain readings of the shrinkage specimens. Specific creep was determined as the amount of
concrete creep strain per unit stress. Results of the creep tests, as taken from the CTL report

(Weinman1994), are shown in Table 4.3.

4.7 Comparison of Measured Data and Creep Predictions

Creep estimation in concrete structures is still under development. Various empirical creep
models exist which try to describe the beha «.or of concrete at a macro-scale level. The Jamestown
Bridge was designed for creep according to the European Recommendations CEB-FIP Model Code
1978. A comparison is made between the measured laboratory data and a) the ACI Committee 209
recommendation, b) amodified version of CEB-FIP MC 1978 referred to as Improved CEB-FIP MC
78, and c) the latest European Recommendation CEB-FIP Model Code 90. The quantity to be
determined with these procedures and compared with the laboratory data is the specific creep, 6,

(also known as unit creep), which is defined as the creep per unit stress. All three recommendations
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provide procedures for calculating the creep coefficient which is defined as the ratio of the creep

strain over the elastic strain.

Table 4.3 - Measured Creep Strain of Concrete

Test Starting at 3 Days Test Starting at 7 Days | Test Starting at 28 Days
Age after Casting after Casting after Casting
After
Loading Creep Specific Creep Specific Creep Specific
(days) Strain Creep Strain Creep Strain Creep
(109 (10°%/psi ) (10%) (10%/psi ) (109 (10°%psi )

1 173 0.111 264 0.148 193 0.078

2 269 0.173 404 0.226 293 0.118

3 336 0.215 463 0.259 314 0.127

4 351 0.225 475 0.265 374 0.151

5 399 0.256 506 0.283 408 0.165

6 433 0.278 510 0.285 443 0.179

7 478 0.307 534 0.298 466 0.188

14 - - 633 0.354 568 0.229
1S 571 0.307 - - - -

21 631 0.404 727 0.406 644 0.260

28 688 0.441 811 0.453 736 0.297

59 837 0.536 971 0.542 834 0.336

90 - - 1067 0.596 941 0.379
91 941 0.603 - - - -
121 982 0.629 - - - -

122 - - 1116 0.623 984 0.397
151 1001 0.642 - - - -
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Test Starting at 3 Days

Test Starting at 7 Days

Test Starting at 28 Days

Age after Casting after Casting after Casting
After
Loading Creep Specific Creep Specific Creep Specific
(days) Strain Creep Strain Creep Strain Creep
(10 (10°%/psi ) (10%) (10%/psi ) (10 (10%/psi )
152 - - 1134 0.634 1071 0.432
182 - - 1193 0.667 1101 0.444
183 1023 0.656 - - - -
214 1079 0.692 1216 0.679 1130 0.456
245 1082 0.694 1230 0.387 1188 0.479
276 1102 0.706 1314 0.734 1197 0.483
307 - - 1320 0.737 1200 0.484
308 1102 0.706 - - - -
338 1148 0.736 - - - -
339 - - 1318 0.736 1268 0.511
364 - - - - 1288 0.519
365 1159 0.743 1315 0.735 - -
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Note that the specific creep, 8, and the creep coefficient, v, are related by:

14

¢t

‘St'E.
Cl

(4.20)

where E_ is the initial modulus of elasticity of concrete given in Table 4.1.

According to the ACI Committee 209 recommendation, the creep coefficient for loading

at 7 days for moist cured concrete is given by:

106
V= ————vy (4.21)
t 10 + t0.6 u
where t = time in days after loading,
v, = concrete creep coefficient at time t,
v, = ultimate creep coefficient
The ultimate creep coefficient is given by
v, =235, (4.22)
where v, is a correction factor given by:
Ve = )T TN o) (4.23)

The various factors entering Eq. 4.23 relate to variations from the standard conditions assumed in

Eq. 4.21 and are described as follows:

v, = loading age factor, to accommodate for loading at an age different than 7 days. For
moist cured concrete it is given as y,, = 1.25 (1) *'"® where t,, is the loading age in

days. For the Jamestown bridge data, loading took place at 3, 7 and 28 days and the
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corresponding values of y,, are 1.098, 0.994, and 0.8436.
y,= ambient relative humidity factor given as y,=1.27 - 0.00674 , for A > 40 with A the

relative humidity in percent. For the Jamestown bridge data, A=50% and y,=0.935,

¥,= average thickness factor (1.0 for an average thickness of 6 in),
Y= slump factor ( assumed as 1.0),

Y, = fine aggregate factor ( assumed as 1.0),

vy,= air content factor (assumed as 1.0).

Using all above values, Eq. 4.21 reduces into Eqs. 4.25, 4.26, and 4.27 for loading at 3, 7, and 28

days respectively.

0.6
v, = 2.413m (4.24)
£06
v, = 2.183W (4.25)
0.6
v, = 1.854 102 796 (4.26)

The improved CEB-FIP MC78 approach provides the following relation for the creep

coefficient, (Miiller and Hilsdorf, 1990):

§(1.15) = B,(1,)+ 04- B, (1~ 1)+ b, [ 6, () - B, (2,)] (“27)

where
B.(t.) = rapid initial flow which develops during the first day after load application,
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Ba(t-t,) = time development of delayed elasticity,
¢, = basic flow coefficient
B¢ = time development of flow,
t = adjusted age of concrete (Eq. 4.28),

» = adjusted age of concrete at time of load application (Eq. 4.28).

LT +10
e, =1+ oAzl (4.28)

At; = number of days where a mean daily temperature T, [°C] prevails.
The rapid initial flow is given by:
B.(t,)=04-(1-02logt,)- 5,20 (4.29)
The coefficients B, and t, take into account the consistency and type of cement. We will assume
a normal, rapid hardening cement of plastic consistency for which f3,,=1 and t.=0.
The development of delayed elasticity with time is provided by:

Bule-1,)=1- L0 (4:30)

The basic flow coefficient, ¢, is given by:

6, = p.,(65-005 RH) @.31)

where RH is the relative humidity in % (50 for our data).

Finally, the time development of flow is:
B (1) =1~ (4.32)

where
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1 I (25700
ﬂlh - 15 Og h

o

) (4.33)

with h, =(2A)/u (mm)
A, = area of the concrete section
u = perimeter in contact with the atmosphere.
For the Jamestown Bridge data, Eq 4.27 reduces to Eqs. 4.34, 4.35, and 4.36 for loading at 3, 7,

28 days respectively.

-0.168

$(t,1.) = 3964 - 04 ¢ 0N _ 4. ol (434)
$(2,1,) = 33865~ 04 ¢ 0T _ 4. o1 (4.35)
$(t,t,) = 25151 04. ¢ 0N-309)" _ g, o1t (4.36)
In Eqs. 4.34, 4.35, and 4.36 the adjusted time is given by:
_ 2278+ 10
f= —30——t = 1.093¢ (4.37)

where t is age of concrete in days.

The latest CEB-FIP MC 90 recommendation provides the following equation to predict

the creep coefficient:

165



¢(t’to): ¢o ‘ﬂc(t— to) (4'38)
where @, = notional creep coefficient, = function that describes the development of creep with

time after loading, t = age of concrete, and f, = age of concrete at start of loading. The notional

creep coefficient is given by:

b0 = Orer - BPtem) - B(1,) 4.39)
with
| ke
_ 100 (4.40
¢RH'1+0.1-3h0 )
1638
B(Eem) = N (4.41)
Bliy) = ———
77 01+ 1,92 (4.42)
where,

f., =mean compressive strength of concrete in N / mm’® at the concrete age of 28 days,

RH = relative humidity of ambient environment in %,

h, =2 4. /u= notional size of member in mm, where A_ is the cross-section and u is the

perimeter of the structural member in contact with the atmosphere. For our data h,=76.2
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mm.

The development of creep with time is given by:

-1 03
]
fot) = | —tte (4.43)
ﬂC( ()) ﬂH+ t— to}
with
P = 15:[1+ (0012 RH)‘g]-hO +250< 1500 (4.44)

For the data of the Jamestown Bridge, the creep coefficient, Eq. 4.38, becomes:

03
4(1,1,) = 55513 ) } (4.45)

01+ 122 [364.3+ (t-1t,)

where t,=3,7, 28, and t=age of concrete in days. The specific creep can be obtained by dividing
the creep coefficient by the modulus of elasticity of the concrete.
The measured specific creep for the three sets of data is compared with the ACI committee

209 prediction results, the improved CEB-FIP MC 78 prediction, and the CEB-FIP MC 90 results

in Figs. 4.7, 4.8, and 4.9. In all cases the ACIL 209 results are lower than the measured creep data
whereas the CEB-FIP MC 90 and the Improved CEB-FIP MC 78 are higher. For specimens loaded
at 7 days there is very good agreement between the experimental results and the two European

guidelines. The agreement for all methods is reasonably good for the 28 days’ test data.
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5. CONCLUSIONS AND RECOMMENDATIONS
This study provides an overview of the monitoring program implemented for Jamestown-
Verrazano bridge to study long term thermal, creep and shrinkage affects. In particular, data from
a one year period from Fall 1997 to Fall 1998 collected using an Automated Data Acquisition
System are presented and analyzed.
The seasonal and diurnal temperature variations at the mid-span closure segment and an
adjoining pier are collected and analyzed. The following observations can be made:
*  Temperature variations follow clear seasonal patterns. Variations within the concrete
superstructure are larger in early fall and late spring seasons.
*  Temperature variations in the top slab are much larger than variations in the bottom slab.
»  There is a clear nonlinear distribution of the temperatures within the bridge.
»  There is a small temperature difference between the north and south cells. It is in the order
of 3 °F at the pier but only 1.5 °F at the main span closure section. It is noted however that
the sensors are not in the extreme locations of the cross sections. It is expected that
temperature differences would be larger between the north and south tip of the cross section.
»  Temperatures registered by the Carlson strain meters are lower that the values obtained by
the thermocouples.
The distribution of the temperature differentials between the top and bottom of the bridge at the
main span closure section is studied. A probability density function is developed to be used in
making future predictions. The average difference is about 6 °F but differences as large as 35 °F
are observed.

Temperature gradients at the main span closure section are developed. These compare well
to the AASHTO bridge design guidelines. It is noted that a longer observation interval than the one
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year followed here would give additional information. Concrete strains induced by temperature
gradients are of the order of 50 x10 * in/in.

Concrete shrinkage and creep strains have already taken place by the time of the observation.
Shrinkage and creep test data provided by CTL are analyzed and compared to the ACI 209
specifications as well as two European Model codes, the Improved CEB-FIP 78 specification and
the CEB-FIP 90 guidelines. In the case of the shrinkage strains the test data agree well with the ACI
predictions whereas the European specifications give lower strains. The opposite is true for the case
of the creep strains where test data agree with the CEB guidelines but are higher than the ACI
specifications. However, the total strains are comparable for all cases. This agrees with other
observations. For example, according to the Bridge Design Manual from the Prestressed Concrete
Institute (PCI, 1997) several prediction formulas exist for creep and shrinkage. These are primarily
based on either ACI Committee 209 or the CEB-FIP Model Code. It is the designer’s option to use
either the ACI committee 209 or CEB-FIP formulas. It is important however to recognize
information from both sources should not be combined in the same design since the ACI procedure
leads to higher shrinkage and lower creep values than the CEB-FIP method. It is noted that CEB-
FIP Model Code 1978 was used during the original design of the bridge.

It is recommended that the monitoring is continued to analyze a longer pool of temperature
data. In addition, a time analysis of the bridge can provide stresses which can be compared with

measured values.
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APPENDIX A
This Appendix summarizes the equations used for the reduction of the data from the Carlson
strain meters (1). Each Carlson strain meter has the following properties:
T, = gage factor in Degrees/Ohm
C = calibration constant
R, = resistance @ 0 °F (gage factor)
Two readings are taken from each Carlson strain meter, the 3-Lead Resistance (3L), and the

Resistance Ratio (R;). The temperature T is obtained using the following equation:

T.=(L-R)T,

The corrected strain @ 73 °F is then obtained by:

€,3=100(R~R)C+(T Tl ~(To-Ty)e,

where Ty, = reference temperature (73 °F), ag= 6.7 x 10 ppm/°F (coefficient of thermal expansion
for the gage), &, = 6.35 x 10 ppnv/ °F (coefficient of thermal expansion for concrete).

The value of interest is the corrected strain minus the corrected strain at initial reading given by:

-(&,3-€,4z€r0)

where ¢, zero is the corrected strain @ 73 °F (for chosen “zero” reading). The minus sign in the
above equation is provided for plotting purposes to give a positive value to compressive strains.
Zero readings used for gages 1 through 4 were the first readings obtained on 5/9/92. Zero readings

used for gages 5 through 19 were the readings obtained on 5/14/92.
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